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Abstract

Adaptive mesh refinement (AMR) is a promising com-
putational approach that investigates a scientific problem
using grids of different resolutions in different portions of
the problem space. This allows the more “interesting” ar-
eas of the problem space to be investigated in more detail
than other areas. In this paper, we present efficient ways
for AMR-type applications to do input/output on the IBM
SP2. We propose a disk layout that minimizes I/O costs for
checkpoint/restart operations and investigate several allo-
cation approaches to decluster grid data to multiple disks
to enhance I/O parallelism for timestep/visualization oper-
ations. The experiments on the SP2 show that our strategies
can help to shorten the I/O time to meet the performance re-
quirements of the two types of I/O operations.

1. Introduction

Scientific applications often center around large multidi-
mensional arrays and are I/O intensive, with the need to ef-
ficiently store and retrieve array data. For example, a long-
running simulation code periodically outputs snapshots of
the state to allow later analysis for trends, and also does
checkpoint/restart operations. Managing a large dataset on
a sequential machine is not an easy task, and is more com-
plicated in a parallel environment, often exceeding the ex-
pertise of scientists. Thus, there is a need for a specialized
DBMS or I/O library, which is efficient and easy to use, to
facilitate storage management on parallel machines.

Adaptive mesh refinement (AMR) is becoming an im-
portant method for solving large scientific problems, like
galaxy simulation or crack propagation. Instead of simu-
lating the whole region using a fixed resolution, the AMR
technique dynamically allocates computational resources to
the more interesting areas of the problem space and allows
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them to be investigated in a higher resolution than other
areas. Therefore, this method facilitates tracking of local
phenomena, like the shock waves in computational fluid dy-
namics [2]. The underlying data structure of the AMR tech-
nique is a hierarchy of grids which changes dynamically,
instead of a single multidimensional array. In terms of I/O,
the new computational model and data structure require new
organizations for data on disk to allow fast storage and re-
trieval.

In this paper, we focus on optimizing physical schemas
in order to minimize the I/O time for the two most common
types of I/O operations issued by AMR-type applications
- checkpoint/restart and timestep/visualization. For long-
running production runs, it is desirable to save the state of
certain arrays periodically (checkpoint) in order to resume
(restart) from a previous state in case of a system failure.
Because checkpoint operations are performed frequently, a
good physical schema is required to minimize the I/O time.
We previously proposed the use of “natural chunking” [18]
for checkpoint schemas in applications using High Perfor-
mance Fortran-style data distributions, which spread data
evenly across all processors. For AMR-type applications, a
naive natural chunking schema cannot guarantee high per-
formance and an improved data layout is required to speed
up the I/O process.

Another common set of I/O operations is associated with
timestep/visualization computations. For time-dependent
applications, snapshots of certain arrays are output at se-
lected intervals over time. Output data will then be ana-
lyzed by visualization tools. Again, the performance met-
ric for these operations is the response time - minimizing
the time to store the whole dataset in a timestep operation
and the time to retrieve a subspace from the dataset, like a
multidimensional range query, in a visualization operation.
In a parallel environment, an effective way of minimizing
the response time for data retrieval is to enhance I/O par-
allelism - decluster the dataset among the disks in a way
such that every future retrieval can be balanced among the
disks. Declustering has been a hot research topic in spatial
databases [6, 7, 12, 13, 15]. However, the previous work



assumed that the declustering algorithm and data loading
were run off line. Our goal is to optimize both timestep and
visualization operations on line and we are seeking a declus-
tering algorithm which minimizes the computation time as
well as produces high-quality solutions.

In the remainder of the paper, we begin by giving an
overview of the AMR method and the Panda array I/O
library, which is used as a testbed for verifying various
physical schemas. Section 3 proposes a new physical
schema designed for checkpoint/restart operations. Sec-
tion 4 describes various declustering algorithms for efficient
timestep/visualization. Preliminary results of the experi-
ments conducted on an IBM SP2 are shown in Sections 3
and 4. Related work is discussed in Section 5 and Section 6
concludes this paper.

2. Background

2.1. The adaptive mesh refinement method

AMR is a computational approach which provides an
effective way of deriving accurate solutions to application
problems while using fewer computational resources, like
CPU cycles and memory. AMR has received much atten-
tion from computational scientists in recent years and sev-
eral libraries [1, 10, 14, 20] have been developed to ease the
task of application scientists who wish to use this method.

The concept is as follows: AMR starts with a coarse grid
(level 0) with a minimum acceptable resolution which cov-
ers the entire computational domain. As the computation
progresses, grid points that the application identifies as “in-
teresting” are tagged and grouped into a rectangular region.
A finer grid (level 1, a child of the level 0 grid) with a higher
resolution corresponding to the tagged region is then over-
laid on the original coarse grid. The refinement process pro-
ceeds recursively until all solution points are represented
with an acceptable resolution.

The data structure corresponding to the AMR method
is a hierarchy of nested grids which changes dynamically
at run-time. Figure 1 shows an example hierarchy. When
running on parallel machines, the whole grid hierarchy is
distributed to multiple processors and each processor is re-
sponsible for the computation of a set of component grids,
where each component might be a single grid or a subspace
of a grid in the grid hierarchy, depending on the decompo-
sition strategy used. In this example, all grid points having
the same coordinates but in different levels are assigned to
the same processor in order to maintain parent-child local-
ity. However, many other distribution methods [10] do not
have this property.

Partitioning the grid hierarchy across multiple processors
is not an easy task. Several constraints have to be met si-
multaneously in order to minimize the total execution time.
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Figure 1. Example of a grid hierarchy with four
grids belonging to three different levels. A
grid abbreviated as G m n is read as “grid n

in level m”. This example uses a space-filling
curve enumeration to distribute grids to four
processors [14]. Rectangles filled with differ-
ent patterns are assigned to different proces-
sors.

First, the computation load should be balanced. A spe-
cial characteristic of an AMR algorithm is that achieving
memory balance, i.e. assigning equal amounts of data (grid
points) to each processor, does not necessarily guarantee
CPU-time balance. This is because in an AMR algorithm,
the computational load of a grid is determined both by the
number of grid points in the grid and the level of the grid
in the AMR hierarchy. Finer resolution grids are updated
more frequently than coarser ones. Therefore, if the load
is perfectly memory balanced, it may happen at run-time
that one processor has many more fine-grids than another.
This leads to a huge load imbalance where all of the other
processors must wait on the overloaded one to finish. On
the other hand, if the load is well CPU-time balanced, one
processor may have many coarse-level grids which require
much more memory than processors with an equivalent load
of fine-level grids.

Second, the communication overhead should be mini-
mized. There is a special type of communication, called
inter-grid communication, for AMR algorithms in addition
to normal message passing of boundary information. Inter-
grid communications are used to propagate solution values
along the hierarchy. Parent processors communicate with
child processors to propagate solution values. Therefore,
the distribution for the grid hierarchy is aimed at balancing
the load as well as maintaining the parent-child locality.

In general, the outcome of the various partitioning strate-
gies [10, 14] to distribute the load to multiple processors for
AMR-type applications is that grid data are normally un-
evenly distributed among compute processors in order to
simultaneously meet the constraints described above.
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Figure 2. System architecture of Panda

2.2. The Panda array I/O library

Panda (http://drl.cs.uiuc.edu/panda/) is a DBMS-style
I/O library developed at the University of Illinois to facil-
itate storage management for scientists. It is designed to
support SPMD-style application programs running on dis-
tributed and shared memory architectures. Figure 2 shows
an environment where Panda is running. As shown in the
figure, scientific applications and visualization tools are
running on Panda clients, which communicate with Panda
servers when they want to input or output array data.

Panda provides users with a set of high-level I/O in-
terfaces -checkpoint , restart , timestep , and
read-timestep . With these APIs, applications can read
and write entire arrays as well as arbitrary rectangular re-
gions of arrays directly. For each I/O operation, users de-
scribe the arrays to be read/written - ranks, sizes, mem-
ory locations, the distributions of the arrays among Panda
clients and the desired arrangement of array data on Panda
servers1. Both distributions can be described in an HPF
(High Performance Fortran) format [17], or in a more gen-
eral format (for AMR-type applications). When the dis-
tribution of data among processors is irregular, an intu-
itive way of describing the distribution is to use a general
block format where each grid component is represented by
its origin and size. That is, ann dimensional block is
characterized by two vectors,base = [b0; : : : ; bn�1] and
size = [s0; : : : ; sn�1]. A linked list of blocks is used to
represent the grid components belonging to a compute pro-
cessor.

At roughly the same time, the application processes run-
ning on the compute processors issue a request to each lo-
cal Panda client to input or output a set of arrays. Each
client sends to a selected server (master server) a high-level

1The specification of a disk layout is optional. If users do not specify
the desired organization of data on disk, Panda automatically chooses a
layout suitable for the I/O operation.

description of the request (schema message) containing its
block information. Once a server receives the schema mes-
sages, it informs all other servers of the schema informa-
tion. Based on the schema information, if the operation is
a write, each server can compute an optimal disk organi-
zation and determine which portions of the array data are
its responsibility. Then it plans how to request array data
from clients and writes gathered data to disk, with the goal
to optimize disk accesses. We call this architecture “server-
directed I/O”, described in detail in [17].

For AMR-type applications, as the distribution of grid
data is irregular, it is harder for users to decide the optimal
organization of data on disk, compared to HPF-style appli-
cations. In this paper, we assume that users do not specify
the desired schema and leave it to Panda with the goal to
minimize the I/O time.

3. Checkpoint-Restart Operations

3.1. Approaches

In a distributed-memory context, a checkpoint operation
requires the array data distributed across multiple proces-
sors to be stored in files. Seamons [18] proposed a phys-
ical schema, called natural chunking, which was shown to
provide high performance for distributed checkpoint opera-
tions. Based on the assumption that most checkpoint files
will never be read again, it uses the data’s in-memory dis-
tribution as the on-disk distribution. That is, I/O servern

mod m, wherem is the number of I/O servers, is responsi-
ble for outputting the data belonging to compute processor
n. Figure 3-(b) shows an example natural chunking layout.

For HPF-style applications, balancing the CPU-time
load usually conforms to balancing the memory load.
Therefore, the amount of data assigned to each compute
processor is normally balanced in order to minimize the to-
tal computation time. As the data is balanced among the
processors, the natural chunking strategy guarantees a bal-
anced load among the I/O servers. However, for AMR-
type applications, as discussed in Section 2.1, balancing
the CPU-time load and the memory load do not necessarily
conform to each other. Also, there is an extra constraint to
maintain the communication locality. Therefore, the natu-
ral chunking strategy proposed in [18] (called “naive natural
chunking” in this paper) cannot guarantee a balanced load
for I/O servers. A new physical schema is required.

We propose an improved organization, called “parti-
tioned natural chunking”, for AMR-type applications to do
checkpoints/restarts. It follows the idea of the naive nat-
ural chunking to use the same in-memory distribution as
on-disk distribution in order to minimize any overhead of
data reorganization, while at the same time balancing the
load among the I/O servers. The algorithm first enumerates



all grids belonging to all compute processors across all lev-
els and then decomposes the enumeration intom partitions
with equal amounts of data. Each partition is then assigned
to an I/O server. The enumeration is ordered by processor
id (from the smallest to the largest). For some data distribu-
tions, altering the enumeration order will result in a slightly
better performance during I/O by having the cuts exactly
at the grid boundaries. However, the overhead of finding
the best enumeration order might be larger than the perfor-
mance gain. Figure 3-(c) shows an example.

By using the partitioned natural chunking strategy, the
amount of data to be written by each I/O server is balanced.
Also, reconstructing the compute image in a restart opera-
tion with the same number of processors is easy and effi-
cient: first, only at mostm� 1 grids have been split across
I/O servers in a checkpoint operation and need to be recom-
posed. Second, recomposing a grid spread across multiple
I/O servers is an easy task as only concatenation is required.

We also experimented with another physical schema for
comparison. In the comparison layout, each grid is decom-
posed intom parts, and each portion is assigned to an I/O
server, as shown in Figure 3-(d). This approach can bal-
ance the load. As each grid is decomposed across all I/O
servers, if each server gathers/scatters the grids using the
same order, there will be contention between the servers for
transferring each piece from the compute processors, result-
ing in high communication costs. We reduce the contention
problem by using a different gathering/scattering sequence
for each server - I/O servern starts with the grids belonging
to compute processorn. However, the shift strategy does
not guarantee contention free data transfer and we expect
this layout to have lower message passing throughput.

3.2. Experimental validation

3.2.1. Experimental setups

The experiments described in this paper were conducted
on an SP2 at the Argonne National Laboratory (ANL). Ta-
ble 1 is a brief summary of the current configuration of
the ANL SP2. The JFS performance numbers were de-
termined empirically following the methodology of [17].
More details on the SP2 installation can be found on line
at http://www.mcs.anl.gov/CCST/computing/quad/.

We wrote a generator to produce AMR-type distribu-
tions, which are used as input to Panda. The input to the
generator is a collection of user-selected grids of different
resolutions which represent the grid hierarchy generated by
AMR-type applications2. The generator uses a decomposi-

2At first, we used the DAGH infrastructure [14] and an available real
AMR-type application, an implementation of the Buckley-Leverette equa-
tions in 2D, to generate the grid hierarchy. However, the dataset generated
by the application is too small (less than 1 MB) to show any performance
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Figure 3. Different organizations of a grid hier-
archy on disks. (a) The grid hierarchy shown
in Figure 1, with four compute processors and
two I/O servers. Rectangles filled with differ-
ent patterns are assigned to different proces-
sors. (b) The “naive natural chunking” strat-
egy. Compute processors are assigned to I/O
servers in a round-robin order. (c) The “parti-
tioned natural chunking” strategy. Grids are
first organized into a linear structure and then
decomposed into two partitions of equal size
to be assigned to two I/O servers. (d) An ex-
perimental organization used for comparison.
Each grid is decomposed into two portions to
be assigned to two I/O servers.

tion strategy based on space-filling curve [14] to partition
and distribute the problem space to compute processors.

3.2.2. Performance results

Figure 4 shows an example distribution generated by the
simulator. As can be seen from the figure, the CPU load3

is nearly balanced among the compute processors; however,
the amount of data is not. This is typical of an AMR-type
application as explained in Section 2.1.

difference of using different physical schemas. Also, the application got
stuck (the computation time was longer than 3 hours and we later killed
the job) when the problem size was slightly enlarged. We are still looking
for a more suitable application.

3The CPU load is computed by aggregating the computational load of
all grid points belonging to a process. The computational load of a grid
point is determined by the frequency that it is updated, assuming that each
higher level child grid updates twice as often as its parent grid.



General information
Processor 120 MHz POWER2
Main memory 256 MB
Scratch space 2 GB
Measured file system peak performance
JFS writes 6.1 MB/sec
JFS reads 7.1 MB/sec
Message passing performance
Latency 31 microseconds
Bandwidth 90 MB/sec

Table 1. The current hardware and software
configurations of the ANL SP2

Figure 5 shows the performance of checkpointing and
restarting the grid hierarchy shown in Figure 4. All data
points are the average of 4 runs, and the error bars corre-
spond to a 95 percent confidence interval for the mean. As
expected, the naive natural chunking strategy cannot guar-
antee high performance as the amount of data input/output
by each I/O server varies greatly; Figure 6 shows this trend
clearly. The partitioned natural chunking strategy boosts the
performance to be over 95% of the peak throughput of the
underlying file system at each I/O server for all configura-
tions.

When the comparison approach is used, though data is
evenly assigned to the I/O servers, performance drops a lit-
tle bit compared to the partitioned approach when 2 or 4
I/O servers are used and degrades up to 5% when the num-
ber of I/O servers is increased to 8 for checkpoint oper-
ations. Communication contention is responsible for the
slowdown. Figure 6 verifies this explanation by showing
the costs of communications during writes with simulated
infinitely fast disks (created by commenting out allfread
and fwrite calls). Panda’s message passing throughput
drops up to 30% due to the communication contention. For
the overall I/O time, the effect of communication overhead
is small when a small number of I/O servers is used. But
when 8 I/O servers are used, the effect is visible. In a work-
station cluster, where the network may be relatively slow,
minimizing communication overhead is particularly impor-
tant. As Figure 6 illustrates, we expect the partitioned nat-
ural chunking approach to be more robust across platforms
than the comparison approach as it takes both the message
passing performance and workload balance into considera-
tion.

4. Timestep-Visualization Operations

4.1. Approaches

Applications solving time-dependent problems output
data at selected intervals over time (timestep data), which
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Figure 4. Example output of the simulator.
The left-hand side group of bars shows the
CPU load of each processor (normalized to
the smallest value). The right-hand side
group shows the amount of data residing in
each processor’s memory, again normalized
to the smallest value. The total size of the
grid hierarchy is 512 MB. This distribution is
used in all experiments shown in this paper.

will be later post-processed for eventual visualization by vi-
sualization tools. The physical schema for timestep data on
multiple disks should be optimized for both timestep-write
(abbreviated as T-W in this paper) and visualization-read
(abbreviated as V-R) operations, for which I/O time can be
a significant fraction of total run time.

The read operations performed during visualization4

usually correspond to multidimensional range queries and
an important performance factor is the degree of I/O paral-
lelism when running in a parallel environment. Therefore,
an optimal layout for timestep output data is to decompose
the array into chunks (tiles) and then distribute chunks to
I/O servers with the goal that every future retrieval can be
balanced among the disks and use maximum parallelism.
Applying the same chunking strategy to a grid hierarchy,
one can decompose each grid in the grid hierarchy and as-
sign the chunks belonging to each grid independently with
the assumption that if all grids are distributed in an optimal
way, every future retrieval of a subspace of a grid hierarchy
is likely to be balanced among the disks.

The assignment of chunks conforms to a declustering

4In a grid hierarchy, as fine grids are overlaid on coarser ones, many
grid points will have the same coordinates. Therefore, when viewing a
subspace of a grid hierarchy, users can specify to view grid points of a
specific level. If users do not specify it in the input, for each point, the grid
point of the finest-grained level will be viewed.
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Figure 5. Throughputs for reading/writing the
512 MB grid hierarchy of Figure 4 with 8 com-
pute processors and 2, 4 or 8 I/O servers. The
upper graph shows the average fraction of
peak file system throughput utilized by each
I/O server during checkpoint operations and
the lower graph shows the fraction of peak
throughput for restart operations.

Checkpoint-Write

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 8

Number of I/O servers

Fr
ac

tio
n 

of
 p

ea
k t

hr
ou

gh
pu

t

Naive Partitioned Comparison

Figure 6. Comparison of three layouts with
simulated fast disks, using the same configu-
ration as in Figure 5. The graph shows the
average fraction of peak message passing
(MPI) throughput utilized by each I/O server
for checkpoint operations. Results for restart
operations are similar.

problem - given a set of data blocks (chunks) andm disks,
define a mapping between data blocks and disks [12]. In re-
cent years, various declustering algorithms have been pro-
posed for spatial databases. In general, these methods
can be categorized into three types: linear-time, similarity
based and graph-coloring. Du [6] proposed thedisk mod-
ulo method to assign data blocks to disks in a round-robin
manner. The advantage of this approach is its simplicity.
Faloutsos [7] applied the idea of the space filling curve to
impose a linear ordering on multidimensional data blocks.
The data blocks are then assigned to disks in a round robin
fashion. This approach has been empirically shown to per-
form better than the disk modulo method for square queries.
All the above are linear-time approaches as the assignment
can be computed in approximately linear time; however, the
assignments these approaches generate are generally subop-
timal. Also, these approaches are less flexible in extending
to handle heterogeneous disks.

The similarity based declustering approaches map the
declustering problem into a min-cut graph partitioning
problem. A fully-connected, complete graph is first created
by mapping each data block to a node in the graph. The
weight of an edge connecting two nodes is determined by



the probability of two corresponding blocks being accessed
together in data retrieval. Thus, the problem of finding the
optimal allocation corresponds to finding the minimal-cut
partition of the graph. Liu [12] applied the Kernighan-Lin
algorithm (a specialized simulated-annealing algorithm for
solving the graph partitioning problem) to find the minimal-
cut partition. The solution it generates is generally good
but it takes long to converge. Another similarity approach,
called the minimax spanning tree algorithm, was proposed
in [13]. Its key idea is to extend Prim’s minimal span-
ning tree algorithm to generate partitions. The execution
time of the minmax approach is shorter than applying the
Kernighan-Lin search algorithm but the solution is less opti-
mal. In general, the drawback of similarity based decluster-
ing algorithms are their high complexity - at least quadratic
for the mapping and the optimization phases, resulting in
long execution time. However, these approaches are quite
flexible in taking other constraints (besides minimal-cut)
into concern during partitioning.

Recently, Prabhakar mapped the declustering problem to
a graph coloring problem [15]. Again, a complete graph
is first created as in the similarity based approach. Then,
instead of finding the minimal cut by taking global assign-
ments into concern, it only optimizes local assignments by
preventing a data block to be assigned to the same disks as
its close neighbors. Therefore, declustering data blocks to
m disks corresponds to am-colorability problem: for each
node in the graph, find its closestm-1 neighbors and call
them adjacent nodes; usem colors to color the graph such
that no two adjacent nodes are assigned with the same color.
This approach cannot generate optimal solutions but is more
computationally efficient than similarity based algorithms.

All the above algorithms can be used in Panda to assign
chunks to disks. Linear-time approaches require less com-
putation time and can give good performance for T-W oper-
ations; however, the solutions they generate are suboptimal
for range queries and the approaches are less flexible for
extensions. Similarity based approaches produce high qual-
ity solutions but require more computation time during a T-
W operation, which will be visible in application response
time. The graph-coloring approach sits in the middle. The
solutions it generates are not as good as the similarity based
approaches but it requires less computation time and is as
flexible as similarity based approaches. Flexibility is im-
portant for our future extensions to handle heterogeneous
disks and to consider the correlations of assigning multiple
grids, e.g. chunks having the same coordinates but in differ-
ent levels can be assigned to the same disks as the chance
that they will be visualized together is very low. Due to
these concerns, we devised a solution based on graph col-
oring (which we later discovered to be a generalization of
[15]).

The pseudo code for our algorithm appears below. The

assignment algorithm removes the chunk at the head of the
queue and determines which disks are suitable (not the same
as its neighboring chunks) for the chunk. When more than
one disk is suitable, in [15], the algorithm chooses randomly
among those with equal probability. We, in addition, take
load balancing into consideration so that among those suit-
able chunks, the algorithm chooses the least loaded disk (as-
signed the least amount of data currently). When there is
a tie, i.e. several suitable disks are equally loaded, func-
tion choose disk resolves the tie. In the current imple-
mentation, as close neighbors can be computed easily, more
distant neighbors will be checked until the tie is resolved.
Other approaches like random assignment can be used if it
is time-consuming to find neighbors.

Coloring(int num_of_disks) {
weights[ ] = [0, ..., 0];
add(queue, first_chunk);
while (not empty(queue)) {

current_chk_id = remove_head(queue);
// choose disk to hold the chunk
min_weight = MAX_WEIGHT;
min_weight_disks = { };
for (i = 0; i < num_of_disks; i++) {

if (!suitable(current_chunk_id, i))
continue;

if (weights[i] == min_weight)
add_to_set(min_weight_disks, i);

if (weights[i] < min_weight) {
min_weight = weights[i];
min_weight_disks = {i};

}
}
assign(current_chunk_id,

choose_disk(min_weight_disks);
// push neighboring chunks to the queue
for (each neighboring chunk c)

add(queue, c);
}

}

4.2. Performance results

We tested the declustering approaches for T-W/V-R op-
erations on the ANL SP2. In this paper, we only focus on
evaluating the performance of different declustering algo-
rithms and use a fixed decomposition strategy and chunk
sizes. Each grid in the grid hierarchy is decomposed sep-
arately into equally sized partitions along each dimension,
creating a set of chunks. Then, all chunks belonging to a
grid are assigned in one call to a declustering algorithm. In
each declustering algorithm, we allocated a vector called
weights to record the amount of data assigned to each
disk currently. The declustering algorithm takes the vec-
tor as an input in assigning chunks of each grid in order to
maintain load-balancing across all grids.



We compared four declustering approaches - round-
robin, which is ordinarily used in Panda to assign chunks
to I/O servers; Kernighan-Lin [12], a similarity based ap-
proach that uses simulated annealing to search for an op-
timal assignment; Hilbert-curve [7], a linear strategy that
uses a space-filling curve to enumerate the chunks, and as-
signs thenth chunk in the enumeration to servern mod m5

and our modified graph-coloring approach. Figure 7 shows
the I/O time for both T-W and V-R operations. Each result
is an average of 4 iterations and for the V-R operations, the
response time is the average of retrieving 16 randomly cho-
sen subspaces. The area of each requested subspace is 1/8
of the original problem size. However, the total amount of
data retrieved from disk varies depending on the location of
the subspace.

As can be seen from the figures, for T-W operations,
all approaches but Kernighan-Lin deliver high performance,
utilizing above 85% of the peak file system throughput, as
the computation time of these declustering algorithms is
negligible. The Kernighan-Lin approach, however, requires
high computation cost. For the experiments shown in Figure
7, the computation time is tens of seconds and the through-
put drops to as low as 65% of peak.

For V-R operations, the Kernighan-Lin approach pro-
duces the best results. The graph-coloring approach is a
close second. The next is the Hilbert-curve approach which
is a bit worse than the graph-coloring approach as this ap-
proach does not intentionally assign close-by chunks to dif-
ferent servers, instead relying on the property of the Hilbert
curve to achieve declustering. The round-robin approach
performs worse than the others as it does not take the rel-
ative locations of chunks into concern to scatter close-by
chunks to different servers during the assignment.

Ideally, the implementation of T-W operations should
automatically choose the size for chunks on disk as well
as the assignment of chunks to disks because both factors
are tightly interrelated and have a strong impact on I/O per-
formance. To see the effect of using different chunk sizes,
Figure 8 shows the performance of T-W/V-R operations us-
ing the graph-coloring declustering approach and varying
chunk sizes in each run. For T-W operations, performance
degrades by up to 8% as the chunk size decreases, because
more chunks mean more time to assign and gather.

For V-R operations, the trends are more complex, as mul-
tiple performance factors are involved. In Panda, a chunk is
a unit for reads. That is, a whole chunk will be read into
memory when part of it is requested. Hence, a smaller
chunk size can reduce the overhead of reading unneces-
sary data and can help to balance the load among the I/O
servers more evenly. However, it will cause a larger num-

5We implemented both the Kernighan-Lin and Hilbert-curve ap-
proaches according to the algorithms described in papers [9] and [7]
respectively.
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Figure 7. Performance of T-W operations and
V-R operations on a 512 MB grid hierarchy
with 8 compute processors and 4, 6 or 8 I/O
servers, using different declustering strate-
gies and a fixed chunk size of 512 KB. The
upper graph shows the average fraction of
peak file system throughput utilized by each
I/O server during timestep operations. The
lower graph shows the average fraction of
peak file system throughput for visualization
operations. Read throughput is calculated by
dividing the response time by the amount of
data requested (which may be smaller than
the amount read).



ber of chunks to be retrieved during a V-R operation and
more random seeks will be performed to fetch data chunks,
resulting in a longer response time for V-R operations. We
plan to investigate the problem of automatically choosing
the optimal chunk size for declustering in the future.

5. Related Work

In recent years, several database systems have been de-
signed to handle scientific datasets [3, 5, 16, 18]. Data vol-
ume has been the most important characteristic of these
databases, forcing the data to be stored on secondary or
even tertiary storage devices instead of keeping them in fast
memory. Therefore, most of the research has emphasized
providing an efficient organization of data on disk in order
to speed up users’ accesses to data. They argue that the tra-
ditional method of storing an array in row-major or column-
major order will lead to disastrous performance when ac-
cess patterns are different from storage patterns.

[8] used a PLOP file structure for the array storage of ra-
dio astronomy applications at the NRAO. In PLOP files, a
specific set of dimensions is partitioned by splitting each
dimension into a series of slices. Then the intersection
of one slice from each dimension defines one logical data
bucket. This method optimizes query performance when
the choices of split are based on a preliminary statistical sur-
vey of data access patterns. [16] enhanced the POSTGRES
DBMS to support multidimensional arrays with chunked
schemas (one chunk per disk block). They chose an opti-
mal chunk layout based on the actual access patterns of the
arrays when used by global change scientists in the Sequoia
project [19]. Paradise [5] used a client-server architecture
and provided an extended-relational data model for model-
ing GIS applications, with support for 2D chunked arrays
with a structure called tiles. [4] showed how to use a com-
bination of simulated annealing and a rule-based approach
for on-line generation of optimal I/O plans and layouts us-
ing the Panda parallel I/O library for scientific applications.
All these layouts worked well with the simple array data,
but are not suitable for the grid hierarchy datatype gener-
ated and visualized by AMR-type applications.

Declustering is an effective way of achieving disk paral-
lelism, hence reducing the response time of a data retrieval
in a visualization operation. Declustering algorithms for ar-
ray data are described in Section 4.

6. Conclusions and future work

This paper has presented efficient physical schemas for
fast storage and retrieval of the grid hierarchies generated
by AMR-type applications. We proposed a disk layout that
minimizes I/O costs for checkpoint/restart operations and
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Figure 8. Performance of T-W operations and
V-R operations on a 512 MB grid hierarchy
with 8 compute processors and 4, 6 or 8
I/O servers, using different chunk sizes and
a graph-coloring declustering strategy. The
upper graph shows the average fraction of
peak file system throughput utilized by each
I/O server during timestep operations. The
lower graph shows the average fraction of
peak file system throughput for visualization
operations.



showed that our partitioned natural chunking strategy can
deliver over 95% of the peak file system throughput on an
SP2 in checkpointing/restarting grid hierarchies. We also
studied allocation approaches to decluster grid data across
multiple disks to enhance I/O parallelism for reads and
writes of time-dependent calculations and visualization op-
erations. Experiments on an SP2 showed a graph-coloring
declustering strategy gives good quality data declustering
and is fast enough to be used on line.

For optimizing the physical schema for timestep and vi-
sualization operations, we used a mesh layout to decom-
pose grids into chunks of fixed sizes. As briefly described
in Section 4.2, there are various factors in deciding an opti-
mal chunk size. For example, a smaller chunk size can help
to balance the load among the I/O servers more evenly but
results in longer computation time for the declustering algo-
rithm. We believe that there should be a systematic way to
choose an optimal chunk size and shape by taking all these
factors into concern and an analytical model might be help-
ful to determine the optimal chunk size. We plan to work
on this problem in the future.

In the past, we have focused on handling heterogeneous
parallel disks in Panda [11] and balanced the data among
the I/O servers dynamically based on the capability of the
servers. AMR-type distributions can be viewed as another
kind of heterogeneity for a parallel DBMS - input (data)
heterogeneity. The interesting area of the problem changes
dynamically and is solved with a higher resolution to al-
low tracking of local phenomena. We plan to merge these
two works together in the future, i.e. store data generated
by AMR-type applications in cases where I/O servers have
different capabilities.
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